13 research outputs found

    Prototipe Automatic Feeder dengan Monitoring IoT untuk Perikanan Bioflok Lele

    Get PDF
    Revolusi Industri 4.0 telah banyak membawa banyak perubahan baik itu positif maupun negartif. Segi positifnya yaitu telah banyak dipakainya otomasi dan robot di dunia industri sehingga produksi bisa meningkat pesat. Sedangkan sudut negatif, semakin banyaknya pekerjaan manusia yang tergantikan oleh mesin sehingga memperkecil peluang kerja. Adanya revolusi industri 4.0 juga membawa kesenjangan antara kelompok melek teknologi dan kelompok gagap teknologi (gaptek). Warga kampung atau desa merupakan kelompok besar dari golongan gaptek. Untuk itu, suatu peluang usaha baru yang dapat dikerjakan msyarakat desa dengan tingkat pendidikan menengah sangat diperlukan. Maka dipilihlah program perikanan bioflok lele. Sentuhan teknologi otomasi dan Internet of Things (IoT) diberikan untuk meningkatkan produktivitas dan membuat masyarakat melek akan perkembangan teknologi era revolusi industry 4.0

    POSITION CONTROL OF VTOL SYSTEM USING ANFIS VIA HARDWARE IN THE LOOP

    Get PDF
    Electric motors have been widely applied in various equipment. One application is found in Unmanned Aerial Vehicles (UAVs). An electric motor speed control system that can balance the aircraft's position is one of the mandatory features that must be owned by the aircraft. The position balancer control also supports the Vertical Take-Off Landing (VTOL) system. This study's VTOL position control system uses Hardware-in-the-loop (HIL) method with MATLAB Simulink and Arduino. ANFIS (Adaptive Neuro-Fuzzy Inferences System) is used as a position control algorithm. The controller performance is compared with conventional PID and FLC (Fuzzy Logic Controller). The system is tested as an initial position variation and loading test. The experiment shows that HIL can help fast prototyping by faster changes in the controller algorithms and is easy to program. The result is varied in each experiment. In the ISE (Integral Square of Error) point of view, ANFIS is better than PID by 100 % and has a very small difference from FLC in the initial position test. ANFIS is better by 95.44% and 4.56% compared with PID and FLC in the loading test, respectively

    Design and Prototyping of Electronic Load Controller for Pico Hydropower System

    Get PDF
    A hydroelectric power plant is an electrical energy generator that utilizes water energy to drive a water turbine coupled to a generator. The main problem in hydroelectric power plants is the frequency and voltage fluctuations in the generator due to fluctuations in consumer loads. The purpose of this research is to make a prototype of the Electronic Load Controller (ELC) system at the Pico Hydropower Plant. The main part of ELC is the frequency sensor and gating system. The first part is made by a Zero Crossing Detector, which detects the generator frequency. The gating system was developed with TRIAC. The method used is the addition of a complement load which is controlled by delaying the TRIAC. Load control is intended to maintain the stability of the electrical energy produced by the generator. The PID algorithm is used in frequency control. The results of the frequency sensor accuracy test are 99.78%, and the precision is 99.99%. The ELC system can adjust the frequency automatically by setting the firing delay on the TRIAC to distribute unused power by consumer loads to complementary loads so that the load used remains stable. The ELC is tested with increasing and decreasing load. The proposed ELC gives a stable frequency at 50Hz. Whereas at the first test, the mean voltage is 183V, and in the second test is 182.17V

    Hybrid fuzzy-PID like optimal control to reduce energy consumption

    Get PDF
    The electric motor is one of the appliances that consume considerable energy. Therefore, the control method which can reduce energy consumption with better performance is needed. The purpose of this research is to minimize the energy consumption of the DC motor with maintaining the performance using Hybrid Fuzzy-PID. The input of the Fuzzy system is the error and power of the system. Where error is correlated with matric Q and power is correlated with matric R. Therefore, adjusting the fuzzy rule on error and power is like adjust matrices Q and R in LQR method. The proposed algorithm can reduce energy consumption. However, system response is slightly decrease shown from ISE (Integral Square Error). The energy reduction average is up to 5.58% while the average of ISE increment is up to 1.89%. The more speed variation in the system, the more energy can be saved by the proposed algorithm. While in terms of settling time, the proposed algorithm has the longest time due to higher computation time in the fuzzy system. This performance can be increased by tuning fuzzy rules. This algorithm offers a solution for a complex system which difficult to be modeled

    Prototype Perancangan dan Implementasi Alat Perontok dan Pengering Padi Otomatis dengan Konsep Teknologi Pembangkit Listrik Tenaga Surya untuk Meningkatkan Produktivitas Hasil Pertanian

    Get PDF
    Dewasa ini pemanfaatan teknologi untuk meningkatkan hasil pertanian tumbuh pesat. Salah satu bentuk pemanfaatannya adalah dengan menggunakan energi terbarukan untuk meningkatkan produktivitas hasil pertanian. Energi terbarukan yang implementasinya sudah sangat banyak adalah Pembangkit Listrik Tenaga Surya (PLTS). Pengunaan PLTS sebagai sumber energi alternatif yang digunakan untuk pengerak alat perontok dan pengering padi otomatis. Petani selalu kesulitan saat musim penghujan maupun kemarau kering tiba-tiba dan sinar matahari tidak dapat mencapai intensitas maksimal saat digunakan untuk mengeringkan padi secara konvensional, oleh karena itu alat perontok dan pengeringan padi otomatis tenaga PLTS sebagai alternatif solusi. Tujuan penelitian ini adalah untuk memberi wawasan dan pengetahuan akan pembuatan dan prinsip kerja dari alat perontok dan pengeringan padi otomatis tenaga PLTS sebagai alternatif solusi untuk meningkatkan padi secara teknologi, dengan demikian diharapkan masyarakat mendapatkan manfaat lebih cepat dalam pengeringan padi dan menghemat biaya untuk pengeluaran memanen padi, sehingga dapat meningkatkan produktivitas hasil pertanian

    Design and Prototyping of Electronic Load Controller for Pico Hydropower System

    Get PDF
    A hydroelectric power plant is an electrical energy generator that utilizes water energy to drive a water turbine coupled to a generator. The main problem in hydroelectric power plants is the frequency and voltage fluctuations in the generator due to fluctuations in consumer loads. The purpose of this research is to make a prototype of the Electronic Load Controller (ELC) system at the Pico Hydropower Plant. The main part of ELC is the frequency sensor and gating system. The first part is made by a Zero Crossing Detector, which detects the generator frequency. The gating system was developed with TRIAC. The method used is the addition of a complement load which is controlled by delaying the TRIAC. Load control is intended to maintain the stability of the electrical energy produced by the generator. The PID algorithm is used in frequency control. The results of the frequency sensor accuracy test are 99.78%, and the precision is 99.99%. The ELC system can adjust the frequency automatically by setting the firing delay on the TRIAC to distribute unused power by consumer loads to complementary loads so that the load used remains stable. The ELC is tested with increasing and decreasing load. The proposed ELC gives a stable frequency at 50Hz. Whereas at the first test, the mean voltage is 183V, and in the second test is 182.17V

    OPTIMAL POWER FLOW DENGAN OPTIMAL PLACEMENT TCSC DEVICE MENGGUNAKAN METODE GENETIC ALGORITHM

    No full text
    With ever-increasing demand for electricity and complexity of power system, optimal operation power system issue becomes important. Optimal power flow (OPF) with optimal placement and rating of thyristor controlled series capacitor (TCSC) have been proposed as an effective solution for determining economic dispatch and controlling power flow in electrical power systems. TCSC is one of type flexible alternating current transmission systems (FACTS) as an effective for controlling transmission line impedance. TCSC is able to decrease the total cost of generation, to enhance the steady state stability, to increase the transfer power capabiliity, to improve the voltage profile, and to reduce the transmission line losses. The purpose this study to minimize total cost of generation with the optimal placement and rating of TCSC which use genetic algorithm-design of experiment techniques (GA-DOE) method. To validate the proposed method, simulations are implemented on an IEEE 30-bus power system and Java-Bali 500 kV power system. The results for IEEE-30 bus system, total cost of generation is 0,03% more cheaper than OPF without TCSC. The optimal location of one TCSC compensator in line (2-5) with level compensation -0,2550 Xline. The simulation results for Java-Bali 500 kV with 5 TCSC compensator, the proposed method can reduced total cost of generation is 0,12% compared with OPF without TCSC

    POSITION CONTROL OF VTOL SYSTEM USING ANFIS VIA HARDWARE IN THE LOOP

    Full text link
    Electric motors have been widely applied in various equipment. One application is found in Unmanned Aerial Vehicles (UAVs). An electric motor speed control system that can balance the aircraft's position is one of the mandatory features that must be owned by the aircraft. The position balancer control also supports the Vertical Take-Off Landing (VTOL) system. This study's VTOL position control system uses Hardware-in-the-loop (HIL) method with MATLAB Simulink and Arduino. ANFIS (Adaptive Neuro-Fuzzy Inferences System) is used as a position control algorithm. The controller performance is compared with conventional PID and FLC (Fuzzy Logic Controller). The system is tested as an initial position variation and loading test. The experiment shows that HIL can help fast prototyping by faster changes in the controller algorithms and is easy to program. The result is varied in each experiment. In the ISE (Integral Square of Error) point of view, ANFIS is better than PID by 100 % and has a very small difference from FLC in the initial position test. ANFIS is better by 95.44% and 4.56% compared with PID and FLC in the loading test, respectively

    Optimal Planning of Battery Energy Storage Systems by Considering Battery Degradation due to Ambient Temperature: A Review, Challenges, and New Perspective

    No full text
    In recent years, the goal of lowering emissions to minimize the harmful impacts of climate change has emerged as a consensus objective among members of the international community through the increase in renewable energy sources (RES), as a step toward net-zero emissions. The drawbacks of these energy sources are unpredictability and dependence on nature, leading to unstable load power supply risk. One way to overcome instability in the power supply is by using a battery energy storage system (BESS). Therefore, this study provides a detailed and critical review of sizing and siting optimization of BESS, their application challenges, and a new perspective on the consequence of degradation from the ambient temperature. It also reviews advanced battery optimization planning that considers battery degradation, technologies, degradation, objective function, and design constraints. Furthermore, it examines the challenges encountered in developing the BESS optimization model and evaluates the scope of the proposed future direction to improve the optimized BESS, especially its battery. © 2022 by the authors
    corecore